THOMO N.						
UUCMS. No.						

B.M.S COLLEGE FOR WOMEN BENGALURU – 560004

I SEMESTER END EXAMINATION – JAN/FEB-2024

B.Sc – MATHEMATICS

ALGEBRA-I AND CALCULUS-I

(NEP Scheme 2021-22 onwards F+R)

Course Code: MAT1DSC01 Duration: 2 ¹/₂ Hours QP Code: 1015 Max marks: 60

Instructions: Answer all the sections.

SECTION-A

I. Answer any <u>SIX</u> questions. Each question carries TWO marks $(6 \times 2 = 12)$

- 1. Define Symmetric Matrix. Give an Example.
- 2. Find the value k in order that the matrix A = $\begin{bmatrix} 6 & k & -1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix}$ is of Rank 2
- 3. Find the n^{th} derivative of $log_e(2x+3)$
- 4. Discuss the Differentiability of $f(x) = \begin{cases} x \sin(\frac{1}{x}), & x \neq 0 \\ x, & x = 0 \end{cases}$ at x=0
- 5. Verify Lagrange's Mean Value Theorem for the function f(x) = (x 1)(x 2) in [0, 4]
- 6. Evaluate: $\lim_{x \to 0} \frac{\log(sinx)}{cotx}$ using L-Hospital's Rule
- 7. If $u = \frac{x}{y}$ then Prove That $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ 8. Find the Total Derivative du/dt, when $u = x^2 + y^2$, where $x = e^t$, y = sint

SECTION-B

II. Answer any <u>TWO</u> questions. Each question carries SIX marks $(2 \times 6 = 12)$

1. Find the Rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7 \end{bmatrix}$ by reducing it to row reduced echelon form 2. Show that the following equations are consistent and solve them x + y + z = 6, x + 2y + 3z = 14 and x + 4y + 7z = 303. a) Find Eigen Values of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$

b) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ SECTION-C

III. Answer any Six Questions. Each question carries SIX marks

 $(6 \times 6 = 36)$

1. a) Discuss the Continuity of $f(x) = \frac{1}{1+e^{-1/x}}$, if $x \neq 0$ and f(0)=0 at x=0

b) Find the n^{th} derivative of $\frac{1}{(x+3)(2x+1)}$

2. If
$$y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$$
 show that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$

3. Prove that the function which is a continuous in a closed interval is bounded

- 4. State and prove Cauchy Mean Value Theorem
- 5. a) Expand using Maclaurin's Series $f(x) = log_e(1 + sinx)$ b) Evaluate : $\lim_{x\to 0} \left(\frac{1}{x}\right)^{2tanx}$ using L-Hospital's Rule
- 6. a) If $u = (x y)^n + (y z)^n + (z x)^n$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ b) If $u = x^2$, $v = y^2$, then find $J = \frac{\partial(u,v)}{\partial(x,y)}$ and $J' = \frac{\partial(x,y)}{\partial(u,v)}$

7. If
$$u = sin^{-1}\left(\frac{x^2+y^2}{x+y}\right)$$
, then show that (i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = tanu$
ii) $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2} = tan^3 u$

8. Find the extreme values of the function : $f(x, y) = x^3 + y^3 - 3x - 12y + 2$.